小学数学总复习讲解及训练(十) 教案教学设计(人教新课标六年级下册)

实用范文 会员投稿 下载doxc

更新时间:2022-08-05 11:08:02 发布时间:24小时内

“毛熊”为你分享16篇“小学数学总复习讲解及训练(十) 教案教学设计(人教新课标六年级下册)”,经本站小编整理后发布,但愿对你的工作、学习、生活带来方便。

篇1:小学数学总复习讲解及训练(十) 教案教学设计(人教新课标六年级下册)

小学数学总复习专题讲解及训练之期中试卷

一、填空。(24分,每题2分。)

1、24÷(  )=(  ):24 =   =(  )% =(  )折 =(  )(填小数)。

2、8厘米是16分米的(   )%     100千克比80千克多(    )%

12米比(    )少20%         (    )比16少40%

3、一件篮球打九折出售后,售价72元,原价(    )元。

4、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的合数,另一个内项是(     )。

5、把 、 、 和1组成一个比例是(     )。

6、已知6x=4y,x和y成(  )比例,已知 = ,x和y成(    )比例。

7、一个圆锥的体积是32立方厘米,高是4厘米,底面积是(   )。

8、把边长是3厘米的正方形按4 :1扩大后,扩大前后图形之间的面积比是(      )。

9、一个圆柱体和一个圆锥体体积相同,底面积也相同,如果圆柱的高是12厘米,圆锥的高是(   )厘米,如果圆锥的高是12厘米,圆柱的高是(   )厘米。

10、比例尺10 :1,表示图上距离1厘米相当于实际距离(     )厘米。

11、一个圆柱侧面展开是一个周长为24厘米的正方形,圆柱的侧面积是(   )平方厘米。

12、李叔叔写了一部长篇小说,除800元以外,按14%交纳了532元个人所得税,李叔叔这次共得了(     )元稿费。

二、判断。(每题1分,共5分。)

1、两种相关联的量不是正比例,就是反比例。                      (   )

2、一种商品先涨价5%,后又降价5%,又回到了原价。               (   )

3、一个圆柱的体积等于圆锥体积的3倍,它们一定等底等高。     (   )

4、如果两个圆柱体的体积相等,那么它们的侧面积也相等。          (   )

5、如果3a=4b,那么a : b=4 :3。                               (   )

三、选择。(每空1分,共6分。)

1、做一个铁皮烟囱需要多少铁皮,就是求烟囱的(   )

A、表面积       B、体积         C、侧面积

2、①根据我国《国旗法》的规定,国旗的长和宽(    )。

②圆的面积和半径(   )。

A、成正比例      B、成反比例     C、不成比例

3、一个圆锥和一个圆柱等底等高,圆柱体积比圆锥的体积大(   )

A、             B、2倍         C 、

4、根据4×6=3×8,可以写出(   )个不同的比例。

A、8            B、4            C、2

5、12个铁圆锥,可以熔铸成等底等高的圆柱体的个数是(   )

A、6            B、4            C、18

四、计算(共26分)。

1、直接写得数。(每小题0.5分)

1047-998=     + =              3.7+1.9=             2÷14+ =

1÷100%=      0.1+9.9×0.1=       12×( × )=      0.27÷0.3=

2、解方程。(每题2分)

①  x –2= 0.5             ②   :  = x :

③ =                     ④ X:12 = :2.8

3、用递等式计算(能简便计算的要简便计算,每题2分)

① 3÷ - ÷3               ②  ÷[ ×( + )]

③( - + )×12     ④ 5.7-(1.9-1.3)

4、文字题。(每小题3分)

①用2除 的商,减去7的倒数,差是多少?

②甲数的 等于乙数的 ,如果乙数是15,甲数是多少?

五、操作题。(第1题4分,第2题5分)。

1、下图的比例尺是 ,量出图上各数据,求出它的实际占地面积是多少平方米?(量时得数保留整厘米数)

2、在下图中量出学校到汽车站的图上距离,再据比例尺算出实际距离。

①学校到汽车站的图上距离是(   )厘米

②汽车站到商场的图上距离是(   )厘

③商场在汽车站的(   )偏(   ) (   )o方向

2千米处,这幅图的比例尺是(     )。

④从学校到汽车站的实际距离是(   )千米。

⑤在汽车站南偏东45o方向1000米处有一个公园,请在图上画出公园的位置。

六、应用题。(共30分)。

1、水结成冰后,体积增加10%,一块体积是3.3立方米的冰,融化成水后体积是多少?

2、一个无盖的铁皮水桶,底面周长是9.42平方分米,高5分米,做这个水桶至少用了铁皮多少平方分米?至少能装多少水?

3、组装一批电脑,已装了总数的40%,剩下的比已装的多500台。这批电脑共有多少台?

4、一幅地图的线段比例尺是:

0    40   80   120  160千米,甲乙两城在这幅地图上相距14厘米,如果

把它画在比例尺是1:2800000的地图上,该画多少厘米?

5、把一个横截面为正方形的长方体木块,削成一个最大的圆锥体,已知圆锥的底面周长是12.56厘米,高5厘米,长方体的体积是多少?

【参考答案】

一、填空。(24分,每题2分。)

1、24÷( 32 )=(18):24 =   =(75)% =(七五)折 =(0.75)(填小数)。

2、8厘米是16分米的(  5 )%     100千克比80千克多(  25  )%

12米比(  15  )少20%         (  9.6  )比16少40%

3、一件篮球打九折出售后,售价72元,原价(  80  )元。

4、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的合数,另一个内项是(  0.25   )。

5、把 、 、 和1组成一个比例是(    : 1 =   :     )。

6、已知6x=4y,x和y成( 正 )比例,已知 = ,x和y成(  反  )比例。

7、一个圆锥的体积是32立方厘米,高是4厘米,底面积是(  24 )。

8、把边长是3厘米的正方形按4 :1扩大后,扩大前后图形之间的面积比是(   1 :16   )。

9、一个圆柱体和一个圆锥体体积相同,底面积也相同,如果圆柱的高是12厘米,圆锥的高是( 36  )厘米,如果圆锥的高是12厘米,圆柱的高是( 4  )厘米。

10、比例尺10 :1,表示图上距离1厘米相当于实际距离(  0.1   )厘米。

11、一个圆柱侧面展开是一个周长为24厘米的正方形,圆柱的侧面积是(  36 )平方厘米。

12、李叔叔写了一部长篇小说,除800元以外,按14%交纳了532元个人所得税,李叔叔这次共得了(  4600   )元稿费。

二、判断。(每题1分,共5分。)

1、两种相关联的量不是正比例,就是反比例。                      (×)

2、一种商品先涨价5%,后又降价5%,又回到了原价。               (×)

3、一个圆柱的体积等于圆锥体积的3倍,它们一定等底等高。     (×)

4、如果两个圆柱体的体积相等,那么它们的侧面积也相等。          (×)

5、如果3a=4b,那么a : b=4 :3。                               (√)

三、选择。(每空1分,共6分。)

1、做一个铁皮烟囱需要多少铁皮,就是求烟囱的( C )

A、表面积       B、体积         C、侧面积

2、①根据我国《国旗法》的规定,国旗的长和宽(  A  )。

②圆的面积和半径(  C )。

A、成正比例      B、成反比例     C、不成比例

3、一个圆锥和一个圆柱等底等高,圆柱体积比圆锥的体积大( B  )

A、             B、2倍         C 、

4、根据4×6=3×8,可以写出(  A )个不同的比例。

A、8            B、4            C、2

5、12个铁圆锥,可以熔铸成等底等高的圆柱体的个数是( B  )

A、6            B、4            C、18

四、计算(共26分)。

1、直接写得数。(每小题0.5分)

1047-998=49     + =    3.7+1.9=5.6    2÷14+ =1

0.27÷0.3=0.9  1÷100%=1    0.1+9.9×0.1=1.09   12×( × )=

2、解方程。(每题2分)

①  x –2= 0.5             ②   :  = x :

解:  x = 2.5                解: x =  ×

x = 24                       x =

③ =                     ④ X:12 = :2.8

解: 10.8x = 8.1×4               解: 2.8x = 12×

x = 3                            x = 7.5

3、用递等式计算(能简便计算的要简便计算,每题2分)

① 3÷ - ÷3               ②  ÷[ ×( + )]

= 7 -                         =   ÷[ × ]

=6                            =   ÷   =   ×   =

③( - + )×12     ④ 5.7-(1.9-1.3)

=  ×12 - ×12 + ×12     = 5.7 + 1.3 – 1.9

= 4 – 2 + 3                   = 7 – 1.9

= 5                            = 5.1

4、文字题。(每小题3分)

①用2除 的商,减去7的倒数,差是多少?

÷2 -   =

②甲数的 等于乙数的 ,如果乙数是15,甲数是多少?

15 ×  ÷  = 16

五、操作题。(第1题4分,第2题5分)。

1、下图的比例尺是 ,量出图上各数据,求出它的实际占地面积是多少平方米?(量时得数保留整厘米数)

量得图上长是3厘米,宽是1.5厘米

实际长是:3÷  = 1厘米 = 120米

实际宽是:1.5÷  = 6000厘米 = 60米

实际面积:120 × 60 = 7200平方米

2、在下图中量出学校到汽车站的图上距离,再据比例尺算出实际距离。

①学校到汽车站的图上距离是( 2  )厘米

②汽车站到商场的图上距离是(  2 )厘

③商场在汽车站的( 南)偏(西) (  60 )o方向

2千米处,这幅图的比例尺是( 1:100000)。

④从学校到汽车站的实际距离是(  2 )千米。

⑤在汽车站南偏东45o方向1000米处有一个公园,请在图上画出公园的位置。

1000米 = 100000厘米     100000×  = 1厘米

六、应用题。(共30分)。

1、水结成冰后,体积增加10%,一块体积是3.3立方米的冰,融化成水后体积是多少?

解:设融化成水后体积是x立方米

x + 10%x = 3.3      x = 3

2、一个无盖的铁皮水桶,底面周长是9.42平方分米,高5分米,做这个水桶至少用了铁皮多少平方分米?至少能装多少水?

底面半径:9.42 ÷3.14÷2 = 1.5分米

底面积:3.14 ×1.5  = 7.065平方分米

侧面积:9.42×5 = 47.1平方分米

表面积:7.065 + 47.1 = 54.165平方分米

体积:7.065 ×5 = 35.325立方分米

答:做这个水桶至少用了铁皮54.165平方分米,至少能装35.325立方分米水。

3、组装一批电脑,已装了总数的40%,剩下的比已装的多500台。这批电脑共有多少台?

解:设这批电脑共有x台

(1 - 40%x) - 40%x = 500      x = 2500

4、一幅地图的线段比例尺是:

0    40   80   120  160千米,甲乙两城在这幅地图上相距14厘米,如果

把它画在比例尺是1:2800000的地图上,该画多少厘米?

甲乙两城的实际距离:14 ×40 = 560千米 = 56000000厘米

56000000 ×  = 20厘米

5、把一个横截面为正方形的长方体木块,削成一个最大的圆锥体,已知圆锥的底面周长是12.56厘米,高5厘米,长方体的体积是多少?

12.56 ÷3.14 = 4厘米

4×4×5 = 80立方厘米

篇2:小学数学总复习讲解及训练(十一) 教案教学设计(人教新课标六年级下册)

主要内容

解决问题的策略

学习目标

1、让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。

2、在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

3、进一步积累解决问题的经验,增强解决问题的“转化”意识,提高学好数学的信心。

考点分析

转化能把新颖的问题变成已经认识、已能解决的问题,从而创造性地利用已有的知识,经验。

典型例题

例1、(运用转化的策略巧算周长)求下面图形的周长。(单位:厘米)

分析与解:求这个图形的周长,就是求围成这个图形的所有线段的长度和。图中有的线段的长度不知道,可以将其中的4条线段进行平移(如下图),平移之后形成一个长方形,长方形的周长和原来图形的周长是相等的。因此求原来图形周长的问题就转化成了求下图这个长方形的周长。

解答:(20 + 7 +3)× 2 = 60(厘米)

点评:通过相等面积的代换转化,把一些不规则的图形转化为规则的、容易判断的图形,这就是转化的优点,在解答时要灵活运用。

例2、(将复杂的图形转化成简单的图形后计算面积)

如图1是一块长方形草地,长方形的长是16米,宽是10米。中间有两条道路,一条是长方形,一条是平行四边形。草地部分的面积有多大?

图1                           图2

分析与解:求草地部分的面积,可以用大长方形的面积减去两条道路的面积,但要考虑两条道路的重叠部分,因此计算比较复杂。可以将图1转化成图2,两条道路转化到了长方形草地的边上,很明显,图2草地部分(阴影部分)的面积和图1相等,现在求草地的面积转化成了求长方形的面积,计算比较简单。

解答:(16 - 2 )× (10 - 2) = 112(平方米)

答:草地部分的面积是112平方米。

例3、(辨析)下面图形的周长可以转化成长15厘米、宽9厘米的长方形来计算,

即周长是(15 + 9)× 2 = 48(厘米)。

分析与解:如下图,将长2厘米的线段移到上面,转化成了一个长方形,但还多两条3厘米的线段。

正确解答:(15 + 9)× 2 + 3 × 2 = 54(厘米)

例4、(已知两个量之间的分率关系与它们的和,求这两个量)

学校图书馆购进的科技书的册数是故事书的 ,购进的科技书和故事书一共1500册。购进科技书多少册?

分析与解:这类有关分数的实际问题可以用方程来解答。需要注意的是根据“购进的科技书的册数是故事书的 ”故事书是单位“1”的量,要设故事书有x册,而不能直接设科技书有x册。

解答:方法1:设故事书有x册,科技书有 x册。

X +  x = 1500

x = 1500

x = 1050        x =   × 1050 = 450

答:购进科技书450册。

很显然,上面解答过程比较复杂。可以这样想:把总数看作单位“1”,根据“购进的科技书的册数是故事书的 ”,可以把故事书看成7份,科技书有这样的3份,一共有10份,科技书占总数的  ;可以看出科技书和故事书的比是3 :7,根据按比例分配问题的解法,可以知道科技书占总数的 。

方法2:3÷(3 + 7)=      1500 ×   = 450 (册)

答:购进科技书450册。

例5、(辨析)红花的朵数比蓝花多 ,蓝花的朵数就比红花少 。

蓝花:

红花:

分析与解:如图,根据“红花的朵数比蓝花多 ”,蓝花是单位“1”的量,平均分成7份,红花有这样的9份。反过来,把红花看作单位“1”,红花平均分成了9份,蓝花相当于这样的7份,蓝花的朵数比红花少 。

正确解答:红花的朵数比蓝花多 ,蓝花的朵数就比红花少 。

例6、(综合题) 小明读一本书,已读的页数是未读页数的 。他再读30页,这时已读的页数是未读页数的 。这本书共多少页?

分析与解:本题中已读的页数和未读的页数均发生了变化,不变的量是一本书的总页数,即已

读的页数和未读页数的和没有变,把这本书的总页数看作单位“1”。“已读的页数是未读页数的 ”,可以转化为“已读的页数是这本书总页数的 ”;再读30页后“已读的页数是未读页数的 ”,可以转化为“已读的页数是这本书总页数的 ”。

解答: 3 ÷ (3 + 2)=

7 ÷ (7 + 3)=

30 ÷ (  -  )= 300(页)

答:这本书共300页。

例7、(综合题) 六(1)班原来女生占全班人数的 ,新学期转出了4名女生,这时女生占全班人数的 。六(1)班现在有女生多少人?

分析与解:本题中女生人数和全班人数均发生了变化,不变的量是男生的人数,因此把男生的人数看作单位“1”。“女生占全班人数的 ”,可以转化为“女生人数是男生人数的 ”;转出若干名女生后,“女生占全班人数的 ”,可以转化为“女生人数是男生人数的 ”。

解答:4 ÷ (9 - 4)=

2 ÷ (5 - 2)=

4 ÷ (  -  )= 30(人)┈┈ 男生人数

30 ×   = 20(人)   ┈┈ 现有女生人数

答:现在有女生20人。

点评:分率的转化过程通常要借助于份数,可以先分析出单位“1”的份数,再根据关系分析出另外的量的份数,再结合具体的条件进行分率的转化。

篇3:小学数学总复习讲解及训练(二) 教案教学设计(人教新课标六年级下册)

主要内容:

应用百分数解决实际问题:利息、折扣问题

学习目标:

1、了解储蓄的含义。

2、理解本金、利率、利息的含义。

3、掌握利息的计算方法,会正确地计算存款利息。

4、进一步掌握折扣的有关知识及计算方法。

5、使学生进一步积累解决问题的经验,增强数学的应用意识。

考点分析

1、存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。

2、利息=本金×利率×时间。

3、几折就是十分之几,也就是百分之几十。

4、商品现价 = 商品原价 × 折数。

四、典型例题

例1、(解决税前利息)李明把500元钱按三年期整存整取存入银行,到期后应得利息多少元?

存期(整存整取) 年利率

一年 3.87%

二年 4.50%

三年 5.22%

分析与解:根据储蓄年利率表,三年定期年利率5.22%。

税前应得利息 = 本金 × 利率 × 时间

500 × 5.22% × 3 = 78.3(元)

答:到期后应得利息78.3元。

例2、(解决税后利息)

根据国家税法规定,个人在银行存款所得的利息要按5%的税率缴纳利息税。例1中纳税后李明实得利息多少元?

分析与解:从应得利息中扣除利息税剩下的就是实得利息。

税后实得利息 = 本金 × 利率 × 时间 ×(1 - 5%)

500 × 5.22% × 3 = 78.3(元)                     …… 应得利息

78.3 × 5%  = 3.915(元)                          …… 利息税

78.3 – 3.915 = 74.385 ≈ 74.39(元)               …… 实得利息

或者  500 × 5.22% × 3 × (1 - 5%) = 74.385(元)≈ 74.39(元)

答:纳税后李明实得利息74.39元。

例3、方明将1500元存入银行,定期二年,年利率是4.50%。两年后方明取款时要按5%缴纳 利息税,到期后方明实得利息多少元?

错误解答:1500 × 4.50% ×(1 - 5%) = 64.125(元)≈ 64.13(元)

分析原因:税后实得利息 = 本金 × 利率 × 时间 ×(1 - 5%),这里漏乘了时间。

正确解答:1500 × 2 × 4.50% ×(1 - 5%) = 128.25(元)

答:到期后方明实得利息128.25元。

点评:求利率根据实际情况有时要扣掉利息税,根据国家规定利息税的税率是5%,所以利息分税前利息和税后利息,在做题时要注意区分。但也有一些是不需要缴利息税的,比如:国家建设债券、教育储蓄等。

例4、(求折扣)一本书现价6.4元,比原价便宜1.6元。这本书是打几折出售的?

分析与解:打了几折是求实际售价是原价的百分之几,只要用实际售价除以原价。

6.4 + 1.6 = 8(元)

6.4 ÷ 8 = 80% = 八折

答:这本书是打八折出售的。

点评:几折就是百分之几十,几几折就是百分之几十几,同一商品打的折数越低,售价也就越低。在折数的题目中,打几折就是按原价的百分之几十出售,它并不代表增加或减少的数额。

例5、(已知折扣求原价)

“国庆”商场促销,一套西服打八五折出售是1020元,这套西服原价多少元?

分析与解:打八五折出售,即实际售价相当于原价的85%。已知原价的85%是1020元,要求原价是多少,可以列方程解答。

原价 × 85% = 实际售价

解:设这套西服原价x元。

x × 85% = 1020

x = 1020 ÷ 85%

x = 1200

检验:(1)用现价除以原价看是否打了八五折。

1020 ÷ 1200 = 0.85 = 85%

(2)看原价的85%是不是1020元。

1200 × 85% = 1020(元)

经检验,答案符合题意。

答:这套西服原价1200元。

例6、一台液晶电视6000元,若打七五折出售,可降价元。

分析原因:6000元为原价,打七五折出售,要先算出实际售价再相减,或者先算出降价部分占原价的25%。

正确解答:6000 - 6000×75% = 1500(元)

或6000×(1 - 75%) = 1500(元)

答:可降价1500元。

例7、(和应纳税额有关的简单实际问题)

一批电冰箱,原来每台售价2000元,现促销打九折出售,有一顾客购买时,要求再打九折,如果能够成交,售价是多少元?

分析与解:“促销打九折出售”就是按原价的百分之九十出售,用“原价×90%”,“再打九折”是在促销价的基础上打九折,要用促销价乘90%。

2000× 90% × 90%

= 1800× 90%

= 1620(元)

答:如果能够成交,售价是1620元。

点评:题目的关键是“再打九折”表示的意思是在促销价的基础上再打九折,单位“1”的量是促销价,即原价打九折后的价钱,这是易错点,要多加注意。

例8、(考点透视)

商店以40元的价钱卖出一件商品,亏了20%。这件商品原价多少元,亏了多少元?

分析与解:以40元的价钱卖出,说明实际售价是40元;亏了20%,即亏了原价的20%,因此实际售价相当于原价的(1 - 20%)。

解:设这件商品原价x元。

x × (1 - 20%) = 40

x × 80% = 40

x = 50

50 × 20% = 10(元)

答:这件商品原价50元,亏了10元。

例9、(考点透视)

某商店同时卖出两件商品,每件各得30元,其中一件盈利20%,另一件亏本20%。这个商店卖出这两件商品总体上是盈利还是亏本?具体是多少?

分析与解:盈利20%,即售出价是成本价的(1 + 20%);亏本20%,即售出价是成本价的(1 - 20%)。两件商品的售出价都是30元,可分别算出两件商品的成本价。

30 ÷(1 + 20%)= 25(元)

30 ÷(1 - 20%)= 37.5(元)

25 + 37.5 = 62.5(元)

62.5 – 60 = 2.5(元)

答:这个商店卖出这两件商品总体上是亏本,亏本2.5元。

篇4:小学数学总复习讲解及训练(六)1 教案教学设计(人教新课标六年级下册)

主要内容

比例的意义和基本性质

学习目标

1、使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。

2、使学生联系图形的放大和缩小理解比例的意义和作用,认识比例的“项”、“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。

3、使学生在认识比例、应用比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意义和能力,丰富解决问题的策略,发展对数学的积极情感。

考点分析

1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。

2、表示两个比相等的式子叫做比例。

3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。

典型例题

例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)

A                     B

C

(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。这两个长方形的长有什么关系?宽呢?

(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?

分析与解:(1)长方形B的长是长方形A的2倍,宽也是长方形A的2倍。或者说长方形B和长方形A长的比是2:1,宽的比也是2:1。

把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:1,就是把长方形A的长和宽按2:1的比进行放大。

(2)把长方形A按1:2的比缩小后为长方形C,长、宽缩小为原来的 ,图C的长是0.75厘米,图C的宽是0.5厘米。

由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。

例2、(根据指定的比,将图形按要求放大或缩小)

先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?

A

B

C

分析与解:(1)按3:2的比将长方形A放大,即将长方形A的长与宽分别扩大1.5倍,那么图B的长为6×1.5 = 9格,宽为4×1.5 = 6格。(2)按1:2的比将长方形A缩小,即将长方形A的长与宽分别缩小到原来的 ,那么图C的长为6÷2 = 3格,宽为4÷2 = 2格。(3)从这三幅大小不同的图形上可以看出,放大或缩小后的图形与原来的图形比较,大小虽变了,但形状不变,而且各条边长度的变化都符合指定的比。

点评:按比例放大图形或缩小图形,关键是要先根据比确定是放大还是缩小,然后确定好每条边的长度,画出图形就行了。

例3、(将两个相等比写成一个等式)

图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个比,你有什么发现?

B

A                                   6厘米

3厘米

8厘米

4厘米

分析与解:(1)图A中长与宽的比是4:3;图B中长与宽的原始比是8:6,而8:6化简后就是4:3。

(2)这两个比化简后都是4:3,比值相等,说明这两个比可以写成一个等式。即

4:3 = 8:6或  =  ,都读作:4比3 等于 8比6。

例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。

(1) 5 :6 和15 :18       (2)  0.2 :0.1 和 3 :1

(3)   :  和 1.2 :0.8  (4) 6 :2 和  :

分析与解:分别求出每组中两个比的比值,如果相等就能组成比例,不相等就不能组成比例。

(1) 因为5 :6 =  ,15 :18 =  ,所以5 :6 = 15 :18。

(2) 因为0.2 :0.1 = 2, 3 :1 = 3,所以 0.2 :0.1 和 3 :1不能组成比例。

(3) 因为  :  =  , 1.2 :0.8 =   ,所以  :  = 1.2 :0.8。

(4) 6 :2 = 3,  :  = 3,所以6 :2 =   : 。

点评:判断两个比能不能组成比例,可以像题目中的方法一样,求出两个比的比值,比值相等就能组成比例,否则就不行。这样解题的依据是比例的意义。

例5、(比例的各部分名称和比例的基本性质)

一台织布机3小时织布3.6米,4小时织布4.8米。你能根据数量间的关系写出比例吗?

分析与解:(1)这台织布机织布米数和织布时间的比相等。      3.6 :3 = 4.8 :4

(2)这台织布机织布米数的比和织布时间的比相等。  3.6 :4.8 = 3 :4

(3)这台织布机织布时间和织布米数的比相等。      3 :3.6 = 4 :4.8

介绍“项”:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:

3.6 :3  =  4.8 :4

内项

外项

观察题中的三个比例,你有什么发现?

3.6 :3 = 4.8 :4   3.6 :4.8 = 3 :4   3 :3.6 = 4 :4.8

(1)3.6和4可以同时做比例的外项,也可以同时做比例的内项。

(2)3.6 × 4 = 3 × 4.8,可见在比例中两个外项的积等于两个内项的积。

(3)如果把3.6 :3 = 4.8 :4改写成分数形式  =  ,等号两边的分子、分母分别交叉相乘,结果也相等。

(4)如果用字母表示比例的四个项,即 a : b = c : d,

那么这个规律可表示成ad = bc 或 bc = ad。

(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例6、(比例基本性质的应用)根据2 × 7 = 1.4 × 10这个等式写出几个比例。

分析与解:根据比例的基本性质,可以得出2和7、1.4和10这两组数要么同时是比例的外项,要么同时是比例的内项。

1.4 : 2 = 7 : 10                  1.4 : 7 = 2 : 10

10 : 2 = 7 : 1.4                  10 : 7 = 2 : 1.4

2 : 1.4 = 10 : 7                  2 : 10 = 1.4 : 7

7 : 1.4 = 10 : 2                  7 : 10 = 1.4 : 2

点评:像这样的比例一共可以写8个。但它们不变的是2和7要么同时为内项,要么同时为外项,而1.4和10这一组数也一样。写的时候可以一组一组地写了。

例7、(按比例放大的含义)

王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?

4厘米

5厘米

分析与解:按比例放大就是把原图形中的各部分线段都按相同的比放大,放大前后的相关线段的厘米数是可以组成比例的。两张图片长的比与宽的比可以组成比例,两张图片中各自长、宽的比也可以组成比例。

12.5 : 5 = 宽 : 4   或    12.5 : 宽 = 5 : 4

例8、(解比例)上图中宽是多少厘米?

分析与解:在解比例时,根据比例的基本性质把比例转化为积相等的式子,然后再根据等式的性质来解答。

解:设宽是ⅹ厘米。

12.5 : 5 = ⅹ : 4

5ⅹ = 12.5 × 4   ┈┈ 根据比例的基本性质

5ⅹ = 50

ⅹ = 10

答:放大后图片的宽是10厘米。

点评:像上面这样求比例中的未知项,叫做解比例。

同学们,你会解答     =    这个比例吗?试试看吧!

篇5:小学数学总复习讲解及训练(六)2 教案教学设计(人教新课标六年级下册)

模拟试题

1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(     )厘米,宽是(    )厘米,这张图片(    )不变,大小(    )。

2、一块正方形的花手帕,边长10厘米,将其按(    )的比放大后,边长变为30厘米。

3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。

4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15     20∶5和4∶1      5∶1和6∶2

5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是(        )。

6、在比例里,两个(    )的积和两个(     )积相等。

7、如果A×3=B×5,那么A∶B= (      ) ∶ (         )。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

(     ) ∶ (    ) = (     ) ∶ (     )。

9、根据3×8 = 4×6写成的比例是(          )、(          )或(           )。

10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是(   )∶(   )。

13、解比例

ⅹ∶3 = 78 ∶14          9x  = 4.50.8                 16 ∶ 25  = 12 ∶x

34 ∶ x = 3∶12        38 ∶ x = 5%∶0.6         1.318 = x3.6

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是(   )。

参考答案:

1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(   4  )厘米,宽是(  3  )厘米,这张图片(  形状  )不变,大小(  变了  )。

2、一块正方形的花手帕,边长10厘米,将其按(  3 : 1  )的比放大后,边长变为30厘米。

3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。

4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15     20∶5和4∶1      5∶1和6∶2

(1) 因为6 :10 =  ,9 :15 =  ,所以6 :10 = 9 :15。

(2) 因为20 :5 = 4,4 :1 = 4,所以20 :5 = 4 :1。

(3) 因为5 :1 = 5,6 :2 = 3,所以5 :1 和 6 :2不能组成比例。

5、在2∶5、12∶0.2、31∶15 三个比中,与5.6∶14 能组成比例的一个比是(2∶5 )。

6、在比例里,两个(  外项  )的积和两个(  内项  )积相等。

7、如果A×3=B×5,那么A∶B= (   5   ) ∶ (    3     )。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

( 6 ) ∶ ( 24 )  =  ( 5 ) ∶ ( 20 )。 6×20 = 24×5 可组成8个比例

9、根据3×8 = 4×6写成的比例是(  3 :4 = 6 :8 )、( 3 :6 = 4 :8 )或(   4 :3 = 8 :6  )。可组成8个比例

10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是(  3 )∶( 1  )。

解:设平行四边形的高是ⅹ厘米。

36 : 24 =  24 : ⅹ

36ⅹ = 24 × 24   ┈┈ 根据比例的基本性质

36ⅹ = 576

ⅹ = 16

答:平行四边形的高是16厘米。

解:设梯形的上底是ⅹ厘米,高是Y厘米。

18 : 27 =  10 : ⅹ        18 : 27 =  12 : Y

18ⅹ = 27 × 10            18 Y = 27 × 12

18ⅹ = 270                 18 Y = 324

ⅹ = 15                     Y = 18

答:梯形的上底是15厘米,高是18厘米。

13、解比例

ⅹ∶3 = 78 ∶14          9x  = 4.50.8                 16 ∶ 25  = 12 ∶x

ⅹ =              ⅹ = 1.6                      ⅹ = 1.2

34 ∶ x = 3∶12        38 ∶ x = 5%∶0.6         1.318 = x3.6

ⅹ = 3                ⅹ = 4.5               ⅹ = 0.26

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( 3  )。

篇6:小学数学总复习讲解及训练(一) 教案教学设计(人教新课标六年级下册)

模拟试题

一、填空。

1、篮球个数是足球的125%,篮球比足球多(  )%,足球个数是篮球的(  )%,足球个数比篮球少(  )%。

2、排球个数比篮球多18%,排球个数相当于篮球的(   )%。

3、足球个数比篮球少20%。排球个数比篮球多18%,(  )球个数最多,(  )球个数最少。

4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的(  )%,其余的果树占总棵数的(  )%。

5、女生人数占全班的百分之几 = (    )÷ (     )

杨树的棵数比柏树多百分之几 = (    )÷ (     )

实际节约了百分之几 = (    )÷ (     )

比计划超产了百分之几 = (    )÷ (     )

6、20的40%是(    ),36的10%是(    ),50千克的60%是(    )千克,800米的25%是(    )米。

7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是(   )元。

二、解决实际问题

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?

参考答案:

一、填空。

1、篮球个数是足球的125%,篮球比足球多( 25 )%,足球个数是篮球的( 80 )%,足球个数比篮球少(  20 )%。

2、排球个数比篮球多18%,排球个数相当于篮球的(  118  )%。

3、足球个数比篮球少20%。排球个数比篮球多18%,(  排 )球个数最多,(  足 )球个数最少。

4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( 60 )%,其余的果树占总棵数的(  40 )%。

5、女生人数占全班的百分之几 = (  女生人数  )÷ (  全班人数   )

杨树的棵数比柏树多百分之几 =( 杨树比柏树多的棵数 )÷ ( 柏树棵数 )

实际节约了百分之几 = ( 节约的数量 )÷ ( 计划数量 )

比计划超产了百分之几 = (  超产产量  )÷ (  计划产量   )

6、20的40%是(  8  ),36的10%是(  3.6  ),50千克的60%是(  30  )千克,800米的25%是(  200  )米。

7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( 1.2a  )元。

xkb1.com

二、解决实际问题

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

(30 - 25)÷ 25 = 20 %

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

(480 - 450)÷ 450 ≈ 6.7%

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?

10 ÷ 80 = 12.5 %

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

500 ÷ (5000 – 500) ≈ 11.1%

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

900 × 17% = 153(万元)

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?

方法1:12 ×10% + 12 = 1.2 + 12 = 13.2(万元)

方法2:12 ×(1 + 10%) =  12 ×1.1 = 13.2(万元

篇7:小学数学总复习讲解及训练(六) 教案教学设计(人教新课标六年级总复习)

主要内容

比例的意义和基本性质

学习目标

1、使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。

2、使学生联系图形的放大和缩小理解比例的意义和作用,认识比例的“项”、“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。

3、使学生在认识比例、应用比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意义和能力,丰富解决问题的策略,发展对数学的积极情感。

考点分析

1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。

2、表示两个比相等的式子叫做比例。

3、组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

4、在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。

典型例题

例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)

A                     B

C

(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。这两个长方形的长有什么关系?宽呢?

(2)如果要把长方形A按 1:2的比缩小,长和宽应是原来的几分之几?各是多少?

分析与解:(1)长方形B的长是长方形A的2倍,宽也是长方形A的2倍。或者说长方形B和长方形A长的比是2:1,宽的比也是2:1。

把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:1,就是把长方形A的长和宽按2:1的比进行放大。

(2)把长方形A按1:2的比缩小后为长方形C,长、宽缩小为原来的 ,图C的长是0.75厘米,图C的宽是0.5厘米。

由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。

例2、(根据指定的比,将图形按要求放大或缩小)

先按3:2的比画出长方形A放大后的图形B,再按1:2的比画出长方形A缩小后的图形C。(1)图B的长、宽各是几格?(2)图C呢?(3)观察这三幅图形,你有什么发现?

A

B

C

分析与解:(1)按3:2的比将长方形A放大,即将长方形A的长与宽分别扩大1.5倍,那么图B的长为6×1.5 = 9格,宽为4×1.5 = 6格。(2)按1:2的比将长方形A缩小,即将长方形A的长与宽分别缩小到原来的 ,那么图C的长为6÷2 = 3格,宽为4÷2 = 2格。(3)从这三幅大小不同的图形上可以看出,放大或缩小后的图形与原来的图形比较,大小虽变了,但形状不变,而且各条边长度的变化都符合指定的比。

点评:按比例放大图形或缩小图形,关键是要先根据比确定是放大还是缩小,然后确定好每条边的长度,画出图形就行了。

例3、(将两个相等比写成一个等式)

图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?比较写出的两个比,你有什么发现?

B

A                                   6厘米

3厘米

8厘米

4厘米

分析与解:(1)图A中长与宽的比是4:3;图B中长与宽的原始比是8:6,而8:6化简后就是4:3。

(2)这两个比化简后都是4:3,比值相等,说明这两个比可以写成一个等式。即

4:3 = 8:6或  =  ,都读作:4比3 等于 8比6。

例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。

(1) 5 :6 和15 :18       (2)  0.2 :0.1 和 3 :1

(3)   :  和 1.2 :0.8  (4) 6 :2 和  :

分析与解:分别求出每组中两个比的比值,如果相等就能组成比例,不相等就不能组成比例。

(1) 因为5 :6 =  ,15 :18 =  ,所以5 :6 = 15 :18。

(2) 因为0.2 :0.1 = 2, 3 :1 = 3,所以 0.2 :0.1 和 3 :1不能组成比例。

(3) 因为  :  =  , 1.2 :0.8 =   ,所以  :  = 1.2 :0.8。

(4) 6 :2 = 3,  :  = 3,所以6 :2 =   : 。

点评:判断两个比能不能组成比例,可以像题目中的方法一样,求出两个比的比值,比值相等就能组成比例,否则就不行。这样解题的依据是比例的意义。

例5、(比例的各部分名称和比例的基本性质)

一台织布机3小时织布3.6米,4小时织布4.8米。你能根据数量间的关系写出比例吗?

分析与解:(1)这台织布机织布米数和织布时间的比相等。      3.6 :3 = 4.8 :4

(2)这台织布机织布米数的比和织布时间的比相等。  3.6 :4.8 = 3 :4

(3)这台织布机织布时间和织布米数的比相等。      3 :3.6 = 4 :4.8

介绍“项”:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:

3.6 :3  =  4.8 :4

内项

外项

观察题中的三个比例,你有什么发现?

3.6 :3 = 4.8 :4   3.6 :4.8 = 3 :4   3 :3.6 = 4 :4.8

(1)3.6和4可以同时做比例的外项,也可以同时做比例的内项。

(2)3.6 × 4 = 3 × 4.8,可见在比例中两个外项的积等于两个内项的积。

(3)如果把3.6 :3 = 4.8 :4改写成分数形式  =  ,等号两边的分子、分母分别交叉相乘,结果也相等。

(4)如果用字母表示比例的四个项,即 a : b = c : d,

那么这个规律可表示成ad = bc 或 bc = ad。

(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例6、(比例基本性质的应用)根据2 × 7 = 1.4 × 10这个等式写出几个比例。

分析与解:根据比例的基本性质,可以得出2和7、1.4和10这两组数要么同时是比例的外项,要么同时是比例的内项。

1.4 : 2 = 7 : 10                  1.4 : 7 = 2 : 10

10 : 2 = 7 : 1.4                  10 : 7 = 2 : 1.4

2 : 1.4 = 10 : 7                  2 : 10 = 1.4 : 7

7 : 1.4 = 10 : 2                  7 : 10 = 1.4 : 2

点评:像这样的比例一共可以写8个。但它们不变的是2和7要么同时为内项,要么同时为外项,而1.4和10这一组数也一样。写的时候可以一组一组地写了。

例7、(按比例放大的含义)

王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?

4厘米

5厘米

分析与解:按比例放大就是把原图形中的各部分线段都按相同的比放大,放大前后的相关线段的厘米数是可以组成比例的。两张图片长的比与宽的比可以组成比例,两张图片中各自长、宽的比也可以组成比例。

12.5 : 5 = 宽 : 4   或    12.5 : 宽 = 5 : 4

例8、(解比例)上图中宽是多少厘米?

分析与解:在解比例时,根据比例的基本性质把比例转化为积相等的式子,然后再根据等式的性质来解答。

解:设宽是ⅹ厘米。

12.5 : 5 = ⅹ : 4

5ⅹ = 12.5 × 4   ┈┈ 根据比例的基本性质

5ⅹ = 50

ⅹ = 10

答:放大后图片的宽是10厘米。

点评:像上面这样求比例中的未知项,叫做解比例。

同学们,你会解答     =    这个比例吗?试试看吧!

小学数学总复习专题讲解及训练(六)

模拟试题

1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(     )厘米,宽是(    )厘米,这张图片(    )不变,大小(    )。

2、一块正方形的花手帕,边长10厘米,将其按(    )的比放大后,边长变为30厘米。

3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。

4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15     20∶5和4∶1      5∶1和6∶2

5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是(        )。

6、在比例里,两个(    )的积和两个(     )积相等。

7、如果A×3=B×5,那么A∶B= (      ) ∶ (         )。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

(     ) ∶ (    ) = (     ) ∶ (     )。

9、根据3×8 = 4×6写成的比例是(          )、(          )或(           )。

10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是(   )∶(   )。

13、解比例

ⅹ∶3 = 78 ∶14          9x  = 4.50.8                 16 ∶ 25  = 12 ∶x

34 ∶ x = 3∶12        38 ∶ x = 5%∶0.6         1.318 = x3.6

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是(   )。

参考答案:

1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是(   4  )厘米,宽是(  3  )厘米,这张图片(  形状  )不变,大小(  变了  )。

2、一块正方形的花手帕,边长10厘米,将其按(  3 : 1  )的比放大后,边长变为30厘米。

3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。

4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15     20∶5和4∶1      5∶1和6∶2

(1) 因为6 :10 =  ,9 :15 =  ,所以6 :10 = 9 :15。

(2) 因为20 :5 = 4,4 :1 = 4,所以20 :5 = 4 :1。

(3) 因为5 :1 = 5,6 :2 = 3,所以5 :1 和 6 :2不能组成比例。

5、在2∶5、12∶0.2、31∶15 三个比中,与5.6∶14 能组成比例的一个比是(2∶5 )。

6、在比例里,两个(  外项  )的积和两个(  内项  )积相等。

7、如果A×3=B×5,那么A∶B= (   5   ) ∶ (    3     )。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

( 6 ) ∶ ( 24 )  =  ( 5 ) ∶ ( 20 )。 6×20 = 24×5 可组成8个比例

9、根据3×8 = 4×6写成的比例是(  3 :4 = 6 :8 )、( 3 :6 = 4 :8 )或(   4 :3 = 8 :6  )。可组成8个比例

10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是(  3 )∶( 1  )。

解:设平行四边形的高是ⅹ厘米。

36 : 24 =  24 : ⅹ

36ⅹ = 24 × 24   ┈┈ 根据比例的基本性质

36ⅹ = 576

ⅹ = 16

答:平行四边形的高是16厘米。

解:设梯形的上底是ⅹ厘米,高是Y厘米。

18 : 27 =  10 : ⅹ        18 : 27 =  12 : Y

18ⅹ = 27 × 10            18 Y = 27 × 12

18ⅹ = 270                 18 Y = 324

ⅹ = 15                     Y = 18

答:梯形的上底是15厘米,高是18厘米。

13、解比例

ⅹ∶3 = 78 ∶14          9x  = 4.50.8                 16 ∶ 25  = 12 ∶x

ⅹ =              ⅹ = 1.6                      ⅹ = 1.2

34 ∶ x = 3∶12        38 ∶ x = 5%∶0.6         1.318 = x3.6

ⅹ = 3                ⅹ = 4.5               ⅹ = 0.26

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( 3  )。

篇8:小学数学总复习讲解及训练(四)1 教案教学设计(人教新课标六年级下册)

主要内容

圆柱和圆锥的认识、圆柱的表面积

学习目标

1、使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

2、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

3、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

4、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

考点分析

1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。形成圆柱的面还有一个曲面,叫做圆柱的侧面。

圆柱两个底面之间的距离叫做圆柱的高。

2、圆锥的底面是个圆,圆锥的侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。

3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

4、圆柱的侧面积 = 底面周长 × 高

5、圆柱的表面积 = 侧面积 + 底面积 × 2

典型例题

例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?

分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图形(圆)外,都有一个曲面。圆柱和圆锥的特征见下表。

圆  柱 圆  锥

底  面 两个底面完全相同,都是圆形。 一个底面,是圆形。

侧  面 曲面,沿高剪开,展开后是长方形。 曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。

高 两个底面之间的距离,有无数条。 顶点到底面圆心的距离,只有一条。

例2、求下面立体图形的底面周长和底面积。

半径3厘米               直径10米

分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。

圆柱:底面周长  3.14 × 3 × 2 = 18.84(厘米)

底面积    3.14 × 3  = 28.26(平方厘米)

圆锥:底面周长  3.14 × 10 = 31.4(米)

底面积    3.14 ×(10÷2) = 78.5(平方米)

点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。

例3、判断:圆柱和圆锥都有无数条高。

错误解法:正确

分析与解:圆柱有无数条高,圆锥只有一条高。

正确解答:错误

点评:圆柱两个底面之间的距离叫做圆柱的高。两个底面之间有无数个对应的点,圆柱有无数条高。从圆锥的顶点到底面圆心的距离是圆锥的高。顶点和底面圆心都是唯一的点,所以圆锥只有一条高。

例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。求它的侧面积。

分析与解:

底面周长

沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形。这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。

解答: 3.14 × 5 × 12 = 188.4(平方厘米)

答:它的侧面积是188.4平方厘米。

点评:圆柱的侧面是个曲面,不能直接求出它的面积。推导出侧面积的计算公式也用到了转化的思想。把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面积就是这个圆柱的侧面积。

例5、(圆柱的表面积)

做一个圆柱形油桶,底面直径是0.6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)

分析与解:求铁皮的面积,就是求圆柱形油桶的表面积,即两个底面积和一个侧面积的和。

解答:底面积:3.14 ×(0.6÷2) = 0.2826(平方米)

侧面积:3.14 × 0.6 × 1 = 1.884(平方米)

表面积:0.2826 × 2 + 1.884 = 2.4492(平方米)≈ 3(平方米)

答:至少需要铁皮3平方米。

点评:这里不能用四舍五入法取近似值。因为在实际生活中使用的材料要比计算得到的结果多一些。因此这儿保留整数,十分位上虽然是4,但也要向个位进1。

例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。做这样一个水桶,至少需用铁皮6123平方厘米。

分析与解:题目中是做一个无盖的圆柱铁皮水桶,只有一个底面。在计算铁皮面积时只要用圆柱的侧面积加上一个底面的面积。

解答:底面积:3.14 ×(30÷2) = 706.5(平方厘米)

侧面积:3.14 × 30 × 50 = 4710(平方厘米)

表面积:706.5 + 4710 = 5416.5(平方厘米)

答:做这样一个水桶,至少需用铁皮5416.5平方厘米。

例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。这个圆柱的表面积是多少平方厘米?

分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。根据圆柱的底面周长可以算出底面积。

解答:底面半径:15.7 ÷ 3.14 ÷ 2 = 2.5(厘米)

底面积:3.14 × 2.5  = 19.625(平方厘米)

侧面积:15.7 × 15.7  = 246.49(平方厘米)

表面积:19.625 × 2 + 246.49 = 285.74(平方厘米)

答:这个圆柱的表面积是285.74平方厘米。

例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?

分析与解:要求水泥的质量,先要求水泥的面积。在圆柱形的游泳池的四周和底部涂水泥,涂水泥的面积是一个底面积加上侧面积。

解答:

侧面积:3.14 × 10 × 4 = 125.6(平方米)

底面积:3.14 × (10 ÷ 2) = 78.5(平方米)

涂水泥的面积:125.6 + 78.5 = 204.1(平方米)

水泥的质量:204.1 ÷ 5 = 40.82(千克)

答:共需40.82千克水泥。

例9、(考点透视)把一个底面半径是2分米,长是9分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?

分析与解:锯圆柱形木头,表面积增加的部分是若干个相同的底面积。锯成三段,要锯两次,每锯一次增加两个面,锯了两次增加了四个面。

3.14 × 2  × 4 = 50.24(平方分米)

答:表面积增加了50.24平方分米。

点评:这是一道在实际生活中应用的题目,对于这一类题目,它的规律就是每切一次就增加两个面。但切的方式不同,增加的面也不同。如果是沿着底面直径把圆柱切成相同的两个部分,增加的面就是以底面直径和高为两邻边的长方形。

篇9:小学数学总复习讲解及训练(三)1 教案教学设计(人教新课标六年级下册)

主要内容

列方程解稍复杂的百分数实际问题

学习目标

1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的方法。

2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

3、通过练习,沟通百分数和分数的联系,提高学生解决相关问题的能力。

考点分析

1、解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同。

2、用字母或含有字母的式子表示题中两个未知的数量,找出数量间的相等关系。根据求一个数的百分之几是多少用乘法列方程求解,或者根据除法的意义,直接解答。

3、“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。

4、灵活运用本单元所学知识,、解决稍复杂的百分数实际问题,沟通分数、百分数应用题之间的联系。

典型例题

例1、(列方程解答和倍问题)

一根绳子长48米,截成甲、乙两段,其中乙绳长度是甲绳的60%。甲、乙两绳各长多少米?

分析与解:乙绳长度是甲绳的60%,把甲绳长度看作单位“1”。

x米

甲绳

( )米                48米

乙绳

乙绳是甲绳的60%

等量关系式:甲绳长度 + 乙绳长度 = 总长度

解答:设甲绳长x米,则乙绳长60%x米。

x + 60%x = 48

1.6x = 48

x = 30

60%x = 30 × 60% = 18

答:甲绳长30米,则乙绳长18米。

检验:30 + 18 = 48(米),符合甲、乙两绳共长48米。

18 ÷ 30 = 60%,符合乙绳长度是甲绳的60%。

例2、(列方程解答差倍问题)

体育馆内排球的个数是篮球的75%,篮球比排球多6个。篮球和排球各有多少个?

分析与解:排球的个数是篮球的75%,是把篮球个数看作单位“1”。

x个

篮球

个      多6个

排球

排球的个数是篮球的75%

等量关系式:篮球 – 排球 = 6个

解答:设篮球有x个,则排球有75%x个。

x - 75%x = 6

0.25x = 6

x = 24

75%x = 24 × 0.75 = 18

答:篮球有24个,排球有18个。

你会自己检验吗?

检验:24 - 18 = 6(个),符合篮球比排球多6个。

18 ÷ 24 = 75%,符合排球的个数是篮球的75%。

点评:在列方程解答和倍、差倍问题的题目时,要注意找准单位“1”的量,通常情况下设单位“1”的量为x,再用另一个量和单位“1”之间的关系,用含有x的式子表示出另一个量,最后根据它们的和或差列出方程。

例3、六年级男生比女生少40人,六年级女生人数相当于男生人数的140%,六年级男生有多少人?

错误解法:设:女生有x人,男生就有140%x人。

140%x - x = 40

0.4x = 40

x = 100

140%x = 100 × 1.4 = 140

分析与解:根据“六年级女生人数相当于男生人数的140%”,可以把男生人数看作单位“1”的量,设男生人数为x人,女生人数就是140%x人,再根据“六年级男生比女生少40人”,可以得出数量关系式:“女生人数 – 男生人数 = 40”,根据此数量关系式列出方程。

正确解答:设男生有x人,女生就有140%x人。

140%x - x = 40

0.4x = 40

x = 100

答:男生有100人。

点评:解错此题的原因是单位“1”的量找错了,要记住找单位“1”的量时候,首先要去找分率(百分率),因为没有分率就没有单位“1”的量,就不能看到“比”,而“比”后面的那个量就是单位“1”的量。

例4、(列方程解决“已知比一个数少百分之几的数是多少,求这个数”的百分数实际问题)

白兔有36只,比灰兔少20%。灰兔有多少只?

分析与解:白兔比灰兔少20%,把灰兔看作单位“1”。

?只

灰兔

36只

白兔

比灰兔少20%

等量关系式:灰兔的只数 – 白兔比灰兔少的只数 = 白兔的只数

解答:设灰兔有x只。

x - 20%x = 36

0.8x = 36

x = 45

答:灰兔有45只。

检验:45 – 45 × 20% = 36 或 (45 – 36)÷ 45 =  20%,符合题意。

例5、(列方程解决“已知比一个数多百分之几的数是多少,求这个数”的百分数实际问题)

白兔有48只,比灰兔多20%。灰兔有多少只?

分析与解:白兔比灰兔多20%,把灰兔看作单位“1”。

?只

灰兔

比灰兔多20%

白兔

48只

等量关系式:灰兔的只数 + 白兔比灰兔多的只数 = 白兔的只数

解答:设灰兔有x只。

x + 20%x = 48

1.2x = 48

x = 40

答:灰兔有40只。

检验:40 + 40 × 20% = 48 或 (48 – 40)÷ 40 =  20%,符合题意。

点评:和前面例题一样,都是去求单位“1”的量。在解题时同样要注意找准单位“1”的量,看问题求什么,确定用什么方法计算。

例6、(难点突破)

某商品如果按现价18元出售,则亏了25%,原来成本是多少元?如果想盈利25%,应按多少元出售该商品?

分析与解:不管是亏25%,还是盈利25%,单位“1”都是这件商品的成本。所以要先求这件商品的成本。18元亏25%,说明18元比成本少25%,即是成本的(1 - 25%)。盈利25%,说明盈利的是原来成本的25%,实际售价是原来成本的(1 + 25%)。

解答:设原来成本是x元。

x - 25%x = 18

0.75x = 18

x = 24

24 × (1 + 25%) = 30(元)

答:原来成本是24元,应按30元出售该商品。

点评:通常情况下,商品的盈利和亏损都是以成本作单位“1”的 。解答这道题目的关键是确定好单位“1”,这也是解百分数应用题时最重要的。

例7、(考点透视)

水果批发部要运进一批水果,第一次运进总量的22%,第二次运进1.5吨,两次共运进这批水果的62%,这批水果一共有多少吨?

分析与解:根据题意可以画出下面的线段图:

62%

第一次22%     1.5吨

“1”? 吨

从图中可以看出:两次一共运的吨数 -  第一次运的吨数 = 1.5吨,单位“1”的量是这批水果的总吨数,设这批水果一共有x吨,那么两次一共运了62%x吨,第一次运进了22%x吨。

解:设这批水果一共有x吨。

62%x - 22%x = 1.5

40%x = 1.5

x = 3.75

答:这批水果一共有3.75吨。

点评:在解答稍复杂的百分数应用题时,要学会画线段图,它的好处是:使题目的条件变得简洁,找

推荐阅读:

初中数学教案人教版教学设计

小学数学教学设计优秀案例

人教版五年级数学数对教学设计

人教版六年级数学节约用水教学设计

六年级数学扇形统计图教学设计

六年级数学《负数的初步认识》优秀教学设计

相关文章

猜你喜欢

大家正在看

换一换