有关高中数学研讨会心得体会及收获一
俗话说,理论是行动的先导。自山东省实行新课程以来,我是第一年带新课程的新授课,对新课程的认识了解还不够,因此,必须积极学习新课程改革的相关要求理论,仔细研究新的课程标准,并结合山东省的考试说明,及时更新自己的大脑,以适应新课程改革的需要。同时为了和教学一线的同行们交流,积极利用好互联网络,开通了教育教学博客,养成了及时写教学反思的好习惯。作为一位年轻的数学教师,我发现在教学前后,进行教学反思尤为重要,在课堂教学过程中,学生是学习的主体,学生总会独特的见解,教学前后,都要进行反思,对以后上课积累了经验,奠定了基础。同时,这些见解也是对课堂教学非常重要的一部分,积累经验,教后反思,是上好一堂精彩而又有效课的第一手材料。
所谓“亲其师,信其道”,“爱是最好的教育”,作为教师不仅仅要担任响应的教学,同时还肩负着育人的责任。如何育人?我认为,爱学生是根本。爱学生,就需要我们尊重学生的人格、兴趣、爱好,了解学生习惯以及为人处世的态度、方式等,然后对症下药,帮助学生树立健全、完善的人格。只有这样,了解了学生,才能了解到学情,在教学中才能做到有的`放矢,增强了教学的针对性和有效性。多与学生交流,加强与学生的思想沟通,做学生的朋友,才能及时发现学生学习中存在的问题,以及班级中学生的学习情况,从而为自己的备课提供第一手的资料,还可以为班主任的班级管理提高一些有价值的建议。
一节课的好坏,关键在于备课,备课是教师教学中的一个重要环节,备课的质量直接影响到学生学习的效果。备课中我着重注意了这样几点:
1、新课程与老课程之间的联系与区别;
2、本节内容在整个高中数学中的地位;
3、课程标准与考试说明对本节内容的要求;
4、近几年高考试题对本节内容的考查情况;
5、学生对本节内容预习中可能存在的问题;
6、本节内容还可以补充哪些典型例题和习题;
7、本节内容在数学发展史上有怎样的地位;
8、本节内容哪些是学生可以自学会的,哪些是必须要仔细讲解的;哪些是可以不用做要求的;
9、本节内容的重点如何处理,难点如何突破,关键点如何引导,疑惑点如何澄清等
在教学过程过,特别重视学生对数学概念的理解,数学概念是数学基础知识,是考生必须牢固而又熟练掌握的内容之一。它也是高考数学科所重点考查的重点内容。对于重要的数学概念,考生尤其需要正确理解和熟练掌握,达到运用自如的程度。从这几年的高考来看,有相当多的考生对掌握不牢,对一些概念内容的理解只浮于表面,甚至残缺不全,因而在解题中往往无从下手或者导致各种错误。还特别重视学生对公式掌握的熟练程度和基本运算的训练,重点抓解答题的解题规范训练.
“落实就是成绩”,在教学过程中,特别关注学生的落实情况,学生的落实在教师教学的最后一个环节,也是最出成绩的一环。因此,教学中特别抓好了一下几点:
1、书面作业狠抓质量和规范,注重培养学生的满分意识,关注细节与过程;
2、导学案提前预习,上课检查,以提高课堂效率;
3、《基础训练》和《导学练》采取不定期抽查的方式,督促学生及时跟上教学进度;
4、单元测试及时批改,及时整理错题订正本。
5、加强尖子生的数学弱科辅导工作,保证尖子生群体的实力;
6、注重基础知识的训练。对基础知识灵活掌握的考查是高考数学的一个最重要的目标,因此高考对基础知识的考查既全面又突出重点,特别利用在知识交汇点的命题,以考查对基础知识灵活运用的程度.因此对基础知识的教学一定要在深刻理解和灵活应用上下功夫,以达到在综合题目中能迅速准确地认识、判断和应用的目的。其中,抓基础就是要重视对教材的研究,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
首先,转变观念要充分认识新课改是教育教学的必然,教师要更新观念,要认真领会新课改的理念,了解课改
革的目的.这样才不会在改革当中迷失方向。
其次,教师要不断学习不断积累,要掌握丰厚的专业知识,所谓”给人一杯水,自己要有一桶水”,要注意本学科与其它学科的联系,拓宽自身的知识占有。要多渠道采取不同手段获取知识,教师除了看专业书籍,也要借助于网络媒体这一先进的手段进行学习.要多和其它教师交流、沟通,提高合作意识,取长补短.
同时,教师是教育、教学的组织者,要充分理解学生,了解学生的实际情况,了解他们的兴趣和爱好,了解不同学生的智力差别,做到因材施教.教师要给学生充分的思维空间、活动空间,给他们展示自我的空间和舞台,活跃学生的思维,变被动的学习为主动的学习,全面提高学生的各方面能力.
以上就是我在本学期的教学工作总结。由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在学校领导老师,前辈的指导下,取得更好成绩。
有关高中数学研讨会心得体会及收获二
数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:"我在初中时数学成绩很好,可现在怎么了?"其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习总结。
1、心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。
2、学习方式、习惯的反思与认识。
(1)学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订学习计划,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。
(2)学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。
(3)忽视基础。在我身边,常有些"自我感觉良好"的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重"量"而轻"质",陷入题海,往往在考试中不是演算错误就是中途"卡壳"。
(4)不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。
1、抓要点提高学习效率。
(1)抓教材处理。正所谓"万变不离其中"。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。
(2)抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。
(3)抓思维训练。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。
(4)抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。
2、加强平时的训练强度。因为有些知识只有在解题过程中,才能体会到它的真正含义。因此,在平时要保持一定的训练度,适量地做一些有典型代表性的题目,弄懂吃透。
3、及时的巩固、复习。在每学完一课内容时,可抽出5-10分钟在课后回忆老师在课堂上所讲的内容,细划分类,抓住概念及其注释,串联前后知识点,形成一个完整的知识网络。
总之,高中数学的学习过程是一个"厚积薄发"的过程,我们要在以后的学习生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩!
有关高中数学研讨会心得体会及收获三
高中数学新课程标准》的颁布,为新一轮教学改革指明了方向,同时也为教师的发展指明了道路,作为教师的我们,须认真学习新课程标准和现代教学教育理论,深刻反思自己的教学实践并上升到理性思考,尽快跟上时代的步伐。我从事高中数学教学已有一段时间,在教学中,经历了茫然与彷徨,体验了无所适从到慢慢摸索的课堂教学组织,其间不乏出现各种思维的碰撞,而正是这些体验、碰撞不断的引起我对高中数学教学的反思,更加坚定了课改的信念,并从中得到启迪,得到成长。
课改,首先更新教学观念,打破陈旧的教学理念,苏霍姆林斯基说过:“懂得还不等于己知,理解还不等于知识,为了取得更牢固的知识,还必须思考。”作为新课程推行的主体——教师,长期以来已习惯于“以教师为中心”的教学模式, 而传统的课堂教学也过分强调了教师的传承作用,思想上把学生看做消极的知识容器,单纯地填鸭式传授知识,学生被动地接受,结果事倍功半。新课改强调学生的全面发展, 师生互动,培养学生终身学习的能力,学生在老师引导下,主动积极地参与学习,获取知识,发展思维能力,让学生经过猜疑、尝试、探索、失败,进而体会成功的喜悦,达到真正的学!所以,现在教师角色的定位需是在动态的教学过程中,基于对学生的观察和谈话,“适时”地点拨思维受阻迷茫的学生,“适度”地根据不同心理特点及不同认知水平的学生设计不同层次的思考问题,“适法”地针对不同类型知识选择引导的方法和技巧。
教学中的师生关系不再是“人、物”关系,而是“我、你”关系;教师不再是特权式人物,教学是师与生彼此敞开心扉、相互理解、相互接纳的对话过程。在成功的教学过程中,师生应形成一个“学习共同体”,他们一起在参与学习过程,进行心灵的沟通与精神的交融。 教学中教师要根据学生反馈的信息,反思“出现这样的问题,如何调整教学计划,采取怎样有效的策略与措施,需要在哪方面进行补充”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行,这种反思能使教学高质高效地进行。
教学时应注意,课堂回答问题活跃不等于教学设计合理,不等于思维活跃,是否存在为活动而活动的倾向,是否适用所有学生,怎么引起学生参与教学。
根据学生已有的知识水平精心设计,启发学生积极有效的思维,从而保持课堂张力。设法由学生自己提出问题,然后再将学生的思考引向深入。学生只有经过思考,教学内容才能真正进入他们的头脑,否则容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。有时我们在上课、评卷、答疑解难时,自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。还有,教师在激发学生学习热情时,也应妥善地加以管理,使课堂教学秩序有利于教师“教”和学生的“学”,要引导学生学会倾听,并加强学生合理表达自己观点的训练。
就上面讲到的初高中数学存在巨大差异,高中无论是知识的深度、难度和广度,还是能力的要求,都有一次大飞跃。学生有会学的,有不会学的,会学习的学生因学习得法而成绩好,成绩好又可以激发兴趣,增强信心,更加想学,成绩越拔尖,能力越提高,形成了良性循环。不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会学习为会学习,经过一番努力能赶上去;如不思改进,不作努力,成绩就会越来越差,当差距拉到一定程度以后,就不容易赶上去了,成绩一差会对学习丧失兴趣,不想学习,越不想学成绩越降,继而在思想上产生一种厌恶,害怕,对自我怀疑,对学习完全失去了信心,甚至拒绝学习。由此可见,会不会学习,也就是学习方法是否科学,是学生能否学好数学的极其重要的因素。当前高中生数学学习方法还处在比较被动的状态,存在问题较多,主要表现在:
1、学习懒散,不肯动脑;
2、不订计划,惯性运转;
3、忽视预习,坐等上课,寄希望老师讲解整个解题过程,依赖性较强,缺乏学习的积极性和主动性;
4、不会听课,如像个速记员,边听边记,笔记是记了一大本,但问题也有一大堆;有的则一字不记,只顾听讲;有的学生只当听老师讲故事时来精神等等;
5、死记硬背,机械模仿,教师讲的听得懂,例题看得懂,就是书上的作业做不起;
6、不懂不问,一知半解;
7、不重基础知识,基本方法,基本技能,而对那些偏、难、怪题感兴趣,好高骛远,影响基础学习;
8、不重总结,轻视复习。
对于我们农村中学,大部分是居于中等及以下的学生,基础知识、基本技能、基本数学思想方法差,思维能力、运算能力较低,空间想象能力以及实践和创新意识能力更无须谈说。上面所谈到的学生问题表现尤为突出,因此教师需多花时间了解学生具体情况、学习状态,对学生数学学习方法进行指导,力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,统一指导与个别指导结合,促进学生掌握正确的学习方法。只有凭借着良好的学习方法,才能达到“事半功倍”的学习效果。
有关高中数学研讨会心得体会及收获四
作为一名高中数学教师来说不仅要上好每一堂课,还要对教材进行加工,对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果,更为关注结果是如何发生,发展的。
我们可以从两方面来看:一是从教学目标来看,每节课都有一个最为重要的,关键的,处于核心地位的目标。高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看,教学组织形式是教学设计关注的一个重要问题。如果我们能充分挖掘支撑这一核心目标的背景知识,通过选择,利用这些背景知识组成指向本节课知识核心的,极富穿透力和启发性的学习材料,提炼出本节课的研究主题,这样就需要我们不断提高业务能力和水平。以下就是我结合高中教师培训联系自己在平时教学时的一些情况对教学的一些反思。
对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从"教"的角度去看数学,他不仅要能"做",还应当能够教会别人去"做",因此教师对教学概念的反思应当从逻辑的,历史的,关系的等方面去展开。
以数列为例:从逻辑的角度看,数列的概念包含它的定义,表示方法,通向公式,分类,以及几个特殊的数列,结合之前学习过的函数来说,它在某种程度上说,数列也是一类函数,当然也具有函数的相关性质,但不是全部。从关系的角度来看,不仅数列的主要内容之间存在着种种实质性的联系,数列与其他中学数学内容也有着密切的联系。数列也就是定义在自然数集合上的函数。
对于在数学课堂每一位学生来说,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的作业等等。每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们向更高层次迈进。平时布置作业时,让优生做完书上的习题后,再加上两三道有难度的题目,让学生多多思考,提高思含量。对于学习有困难的学生,则要降低学习要求,努力达到基本要求。布置作业时,让学困生,尽量完成书上的习题,课后习题不在家做,对于书上个别特别难的题目可以不做练
总之,在上好一堂的同时,结合新课程的教学理念进行相应的教学反思可以不断提高业务能力和水平,从而更好的服务于学生。
有关高中数学研讨会心得体会及收获五
在教学过程中,我觉得教学反思主要是针对以下几方面进行:对数学概念的反思、对学数学的反思、对教数学的反思。
1、重视视基础知识、基本技能的基本方法的反思-学会数学的思考。
高中数学的教学目标是让学生学会数学。对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的、历史的、关系的等方面去展开。
下面从不同的角度来看:以函数为例从逻辑的角度看,函数概念包含定义域、值域、对应法则等以及单调性、奇偶性、周期性、对称性等性质和一些具体的函数,这些内容是函数教学的基础,但不是全部。从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其它内容也有联系。方程的根可以作为函数的图象与x轴交点的横坐标;不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何内容也与函数有着密切的联系。
2、学生学数学的自我反思
高中数学与初中数学最大的区别是从实际的算到理论的思。当初中学生第一次走进高中数学课堂时,他们的头脑并不是一张白纸——对数学有着自已的认识和感受。教师不能把他们看成“空的容器”,按着自已的意思往这些“空的容器”里“灌输数学”,这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多地把学生头脑中的问题“挤”出来,使他们解决问题的思维过程暴露出来,使他们感到数学中的问题所在,思路的矫正,以及对数学更深入的理解。
3、教师对教数学的反思。
课堂上学生是主体,教师是主导,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动为主动,让学生成为学习的主人,教师成为学习的领路人。教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自已的讲解并没有很好地针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味地想要他们按照某个固定的程序去解决某一类问题,学生当时也明白了,但并没有理解问题的本质性的东西。
有关高中数学研讨会心得体会及收获六
说来从事高中数学教学已经几年有余了,谈及自己的教学经历和教学方法,自己感想颇多,现在的我比较注意在教学的每个环节中全面考虑学生的认知因素,情感因素的彼此交融,彼此协调,从而使自己能够顺利完成教学的目标。这一举措的实施,使我的教学的效果获得了全面的提升,并且我的课堂也朝气洋溢,充满活力,学生的学习兴趣也变得越来越浓厚。
记得在一次上课时,那时是在讲数列问题,是要求学生把握通过观察法求数列的通项公式,课堂上我出了几道题让学生练习,要求学生通过前几项的规律归纳总结出数列的通项公式,在巡视过程中发现这些题普遍做的不好,即使班上的好学生也冥思苦想,当时我感到很纳闷。在课后,我做了仔细的思考和调查,发现学生遇到此类不懂的题目时就一筹莫展,真有点盲人摸象的感觉。就连优等生也感到有些茫然。但是学生到感到很有兴趣,都能很认真的在思考。她们都以为此题看似简单解起来为什么却如此之难。看到学生学习情感和立场,我由衷的感到开心。我给学生提示:数学题,可以分为两大类,一类是应用数学规律题,一类是发现数学规律题。应用数学规律题,指的是需要学生应用之前学习过的数学规律解释回答的题目。发明数学规律题,指的是与学生之前学习的数学规律
没有什么关系,需要学生先从已知的事物中找出规律,才能够解释回答的题目。学生所做数学操练,绝大多数属于头类。找数学规律的题目,题目有关一个或几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。于是,捉住了变量,就等于捉住了解决不懂的题目的关键。 通过我的提示,更加激发了她们的好奇心和求知欲,我让同学们汇集我们相关的习题和课外题,因为有些同学们想“难为一下老师”,也想准确展示一下自己。于是刻意查询了许多资料,找了许多她们以为的难题,我也调整了我的教学计划,打算用一节课的时间解决这个不懂的题目,并为此做了充实的准备。
又一节课开始了,孩子们都很期待这节课,都挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。并且有的同学直接向我提问,我作出苦思冥想的样子,有些同学还真为我着急了。其实我想由这种过程引导学生学会思考,如何着手解题,思考依据。当我将同学们提出的不懂的题目一一解释回答出来时,并肯定了她们的提问时,她们的开心劲似乎无法用语言加以形容。接下来,我顺手推舟,让同学察看一系列数列,让他们去试着寻找规律,虽然在解决时不时的会遇到一些困难,但这些问题终究让学生解决了。此时,我从心里佩服她们,给了她们最真切的鼓励:你们真了不起!然后,我又提出新的问题:自己试着从已经解决了的
问题中总结规律,形成自己的“公理”,学生们很乐意,也开始动手总结了。整个学习过程便得是那样的轻松,活泼。经过大概十分钟的归纳,学生有了自己的结论,然后开始了热火朝天的讨论,带经过一番热战,有些对于结论持有怀疑立场的学生也撤销了疑虑。
新的一节课开始了,一组同学首先提问,其它组同学也不甘示弱,挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。并且有的同学直接向我提问,我作出苦思冥想的样子,有些同学还真为我着急了。其实我想由这种过程引导学生学会思考,如何着手解题,思考依据。当我将同学们提出的不懂的题目一一解释回答出来时,并肯定了她们的提问时,她们的开心劲似乎无法用语言加以形容。接下来,我顺手推舟,让同学察看函数规律题与图形规律题,获得规律式的题目有什么特点,很快她们得出了结论:很多是二次函数关系,也有高次函数关系。这个结论很是准确,这是我所想不到的。此时,我从心里佩服她们,给了她们最真切的鼓励:你们真了不起!然后,我又提出新的不懂的题目:那么如何能判断这个规律式是二次函数关系呢?带着这一不懂的题目,同学们又踊跃摸索起来。从几道二次函数规律式不懂的题目中找到了真正的谜底:当因变量的差除以相应自变量是常数时,就是一次函数关系。那末,其它情况一般就是二次函数关系了。带着同学自
己得出的结论,我们展开了大讨论活动,经过一番热战,有些对于结论持有怀疑立场的学生也撤销了疑虑。
真正找规律,固然是找数学规律。而数学规律,多数是函数的解析式。函数的解析式里常常包含着数学运算。因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子。于是,从运算着手,尝试着做一些比较,也是解决回答找规律题的好途径。经过此次教学经历,我真正意识到学生的需求是头位的,在此后的教学中,应从学生的实际需求出发,引发学生的探求知识欲望与摸索欲望,使不同的学生在数学上有不同的成长,为丰富数学课堂教学打下坚实的根基。
有关高中数学研讨会心得体会及收获七
本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课改背景下,对一些教学内容所做的思考与体会。
在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角” 的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫做1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。在课堂教学中,可采用如下设计的教学过程。
1、创设故事情境
一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。 在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位——弧度。如此引入很.自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。
2、探索角新的度量方法
可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样? 为了探索这个问题,把学生分成若干小组,思考下列问题:
① 1度的角是如何规定的?
② 用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗?
③ 用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化?
④ 如何定义圆心角的大小?说明这种度量的好处。
要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。
这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。
新的课程标准不仅强调基础知识与基本技能的获得,更强调让学生经历知识 的形成过程,以及伴随这一过程产生的积极的情感体验和正确的价值观。
[案例2] 等比数列的前n项和公式的探求。
为了求得一般的等比数列的前n项和,先用一个简捷公式来表示。
已知等比数列{ an}的公比为q,求这个数列的前n项和sn。即sn=a1+a2+a3+、、、+an 。
(1)知识回顾。
类比学过的等差数列的前n项和公式,不难想到等比数列前n项和sn也希望能用a1、an,n或q来表示。
请同学们回答:对于等比数列,我们已经掌握了哪些知识?
①等比数的定义,用式子表示为:
②还可以用一系列整式表示:
a2=a1q
a3=a2q
a4=a3q
......
an =an-1q
......
③等比数列的通项公式:n=1.n-1 (n≥2). aaq
(2)新知探求
联想等差数列的前n项和推导方法,问:等比数列前n项的和是否也能用一个公式来表示?
(这是学生完成知识形成过程的重要一步,应留出充分的时间让学生研究和讨论。)
要用a1、n、q来表示sn=a1+a2+a3+、、、+an应先将a2,a3, ···,an用a1、n、q来表示。
即:sn=a1+a1q+a1q+、、、+a1qn-1
注意观察每项的结构:每项都是它前面一项的q倍,能否利用这个q倍,对sn化简求和?
(经过一番思考)对sn两边分别乘以q,再与原式相减。经师生共同努力,完成推导过程.
方法一:用“错位相减法”推导
方法二:用“迭加法”推导
方法三:用“等比定理法”推导
这样设计推导方法加强了知识形成过程的教学,培养了学生的发散思维,既
关注了学生知识与技能的理解和掌握,更关注了学生情感与态度的形成和发展。而传统教学往往以最快的速度给出公式,然后通过例题演练学生,这样教学结果往往使学生死背公式,而不能灵活运用公式解决问题。
有关高中数学研讨会心得体会及收获八
说来从事高中数学教学已经几年有余了,谈及自己的教学经历和教学方法,自己感想颇多,现在的我比较注意在教学的每个环节中全面考虑学生的认知因素,情感因素的彼此交融,彼此协调,从而使自己能够顺利完成教学的目标。这一举措的实施,使我的教学的效果获得了全面的提升,并且我的课堂也朝气洋溢,充满活力,学生的学习兴趣也变得越来越浓厚。
记得在一次上课时,那时是在讲数列问题,是要求学生把握通过观察法求数列的通项公式,课堂上我出了几道题让学生练习,要求学生通过前几项的规律归纳总结出数列的通项公式,在巡视过程中发现这些题普遍做的不好,即使班上的好学生也冥思苦想,当时我感到很纳闷。在课后,我做了仔细的思考和调查,发现学生遇到此类不懂的题目时就一筹莫展,真有点盲人摸象的感觉。就连优等生也感到有些茫然。但是学生到感到很有兴趣,都能很认真的在思考。她们都以为此题看似简单解起来为什么却如此之难。看到学生学习情感和立场,我由衷的感到开心。我给学生提示:数学题,可以分为两大类,一类是应用数学规律题,一类是发现数学规律题。应用数学规律题,指的是需要学生应用之前学习过的数学规律解释回答的题目。发明数学规律题,指的是与学生之前学习的数学规律
没有什么关系,需要学生先从已知的事物中找出规律,才能够解释回答的题目。学生所做数学操练,绝大多数属于头类。找数学规律的题目,题目有关一个或几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。于是,捉住了变量,就等于捉住了解决不懂的题目的关键。 通过我的提示,更加激发了她们的好奇心和求知欲,我让同学们汇集我们相关的习题和课外题,因为有些同学们想“难为一下老师”,也想准确展示一下自己。于是刻意查询了许多资料,找了许多她们以为的难题,我也调整了我的教学计划,打算用一节课的时间解决这个不懂的题目,并为此做了充实的准备。
又一节课开始了,孩子们都很期待这节课,都挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。并且有的同学直接向我提问,我作出苦思冥想的样子,有些同学还真为我着急了。其实我想由这种过程引导学生学会思考,如何着手解题,思考依据。当我将同学们提出的不懂的题目一一解释回答出来时,并肯定了她们的提问时,她们的开心劲似乎无法用语言加以形容。接下来,我顺手推舟,让同学察看一系列数列,让他们去试着寻找规律,虽然在解决时不时的会遇到一些困难,但这些问题终究让学生解决了。此时,我从心里佩服她们,给了她们最真切的鼓励:你们真了不起!然后,我又提出新的问题:自己试着从已经解决了的
问题中总结规律,形成自己的“公理”,学生们很乐意,也开始动手总结了。整个学习过程便得是那样的轻松,活泼。经过大概十分钟的归纳,学生有了自己的结论,然后开始了热火朝天的讨论,带经过一番热战,有些对于结论持有怀疑立场的学生也撤销了疑虑。
新的一节课开始了,一组同学首先提问,其它组同学也不甘示弱,挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。并且有的同学直接向我提问,我作出苦思冥想的样子,有些同学还真为我着急了。其实我想由这种过程引导学生学会思考,如何着手解题,思考依据。当我将同学们提出的不懂的题目一一解释回答出来时,并肯定了她们的提问时,她们的开心劲似乎无法用语言加以形容。接下来,我顺手推舟,让同学察看函数规律题与图形规律题,获得规律式的题目有什么特点,很快她们得出了结论:很多是二次函数关系,也有高次函数关系。这个结论很是准确,这是我所想不到的。此时,我从心里佩服她们,给了她们最真切的鼓励:你们真了不起!然后,我又提出新的不懂的题目:那么如何能判断这个规律式是二次函数关系呢?带着这一不懂的题目,同学们又踊跃摸索起来。从几道二次函数规律式不懂的题目中找到了真正的谜底:当因变量的差除以相应自变量是常数时,就是一次函数关系。那末,其它情况一般就是二次函数关系了。带着同学自
己得出的结论,我们展开了大讨论活动,经过一番热战,有些对于结论持有怀疑立场的学生也撤销了疑虑。
真正找规律,固然是找数学规律。而数学规律,多数是函数的解析式。函数的解析式里常常包含着数学运算。因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子。于是,从运算着手,尝试着做一些比较,也是解决回答找规律题的好途径。经过此次教学经历,我真正意识到学生的需求是头位的,在此后的教学中,应从学生的实际需求出发,引发学生的探求知识欲望与摸索欲望,使不同的学生在数学上有不同的成长,为丰富数学课堂教学打下坚实的根基。
有关高中数学研讨会心得体会及收获九
新课程标准下要求教师在数学教学过程中充分理解和信任学生。理解是教育的前提。在教学中教师要了解学生的内心世界,体会他们的切身感受,理解他们的处境。尊重学生,理解学生,热爱学生,只要你对学生充满爱心,相信学生会向着健康、上进的方向发展的。因为“教育是植根于爱的”。“聪明的教师总是跟在学生后面;愚昧的教师总是堵在学生的前面。”数学与人类社会的关系,认识数学的科学价值,文化价值,提高提出问题,分析问题,解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
它是学习高中物理,化学,技术等课程和进一步学习的基础。同时,它也是学生的终身发展,形成科学的世界观,价值观奠定基础,对提高全民族素质具有意义。学生并不是空着脑袋走进教室的。在走进课堂前,每个学生的头脑中都充满着各自不同的先前经验和积累,他们有对问题的看法和理解,也想表达、诉说。契诃夫曾说过:“儿童有一种交往的需要,他们很想把自己的想法说出来,跟老师交谈。”这就要求教师新课程标准下要转变观念,积极创设能激起学生回答欲望、贴近学生生活、让他们有可说的问题,让他们有充分发表自己看法和真实想法的机会,变“一言堂”为“群言堂”。当然,教师作为教学的组织者也不能“放羊”,在学生说得不全、理解不够的地方,也要进行必要的引导。
总体目标中提出的数学知识(包括数学事实,数学活动经验)本人认为可以简单的这样表述:数学知识是"数与形以及演绎"的知识。所谓数学事实指的是能运用数学及其方法去解决的现实世界的实际问题,数学活动经验则是通过数学活动逐步积累起来的。
本人在高中数学新课程培训中认真听取专家讲课,对于新课标有一定的心得体会汇报如下。
1、基本的数学思想
基本数学思想可以概括为三个方面:即"符号与变换的思想","集全与对应的思想"和"公理化与结构的思想",这三者构成了数学思想的最高层次。对中小学而言,大致可分为十个方面:即符号思想,映射思想,化归思想,分解思想,转换思想,参数思想,归纳思想,类比思想,演绎思想和模型思想。圣于这些基本思想,在具体的教学中要注意渗透,从低年级开始渗透,但不必要进行理论概括。而所谓数学方法则与数学思想互为表里,密切相关,两者都以一定的知识为基础,反过来又促进知识的深化及形成能力。方法,是实施思想的技术手段;而思想,则是对应方法的精神实质和理论根据。就中小学数学而言,大致有以下十种:变换与转化,分解与组合,映射与反映,模型与构造,概括与抽象,观察与实验,比较与分类,类比与猜想,演绎与归纳,假说与证明等。
2、重视数学思维方法
高中数学应注重提高学生的数学思维能力,着是数学教育的基本目标之一。数学思维的特性:概括性,问题性,相似性。数学思维的结构和形式:结构是一个多因素的动态关联系统,可分成四个方面:数学思维的内容(材料与结果),基本形式,操作手段(即思维方法)以及个性品质(包括智力与非智力因互素的临控等);其基本形式可分为逻辑思维,形象思维和直觉思维三种类型。数学思维的一般方法;观察与实验,比较,分类与系统化,归纳演绎与教学归纳法,分析与综合,抽象与概括,一般化与特殊化,模型化与具体化,类比与映射,联想与猜想等。思维品质是评价和衡量学生思维优劣的重要标志,主要表现为:思维的广阔性,深刻性,灵活性和批判性,独创性。
3、应用数学的意识
这个提法是以前大纲所没有的,这几年颇为流行,未见专门的说明。结合当前课改的实际情况,可以理解为"理论联系实际"在数学教学中的实践,或者理解为新大纲理念的"在解决问题中学习"的深化。新旧教材中,都配备有所谓的应用题,有许多内容已经很陈旧,与现实生活相差甚远。结合实际重新编写应用题只是增强应用数学的意识的一部分,而绝非全部;增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习,主动探究。教师有责任拓宽学生主动学习的时空,指导学生撷取现实生活中有助于数学学习的花朵,启迪学生的应用意识,而学生则能自己主动探索,自己提问题,自己想,自己做,从而灵活运用所学知识,以及数学的思想方法去解决问题。
4、注重信息技术与数学课程的整合
高中数学课程应提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质。在保证笔算训练的全体细致,尽可能的使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机,计算器等进行探索和发现。
5、建立合理的科学的评价体系
高中数学课程应建立合理的科学的评价体系,包括评价理念,评价内容,评价形式评价体制等方面。既要关注学生的数学学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中表现出来的情感态度的变化,在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。
总之,新课程标准下数学教学过程对学校管理,对教师和学生都提出了新的要求,面对新课程,教师要在教学过程中充分理解新课程的要求,要树立新形象,把握新方法,适应新课程,把握新课程,掌握新的专业要求和技能----学会关爱、学会理解、学会宽容、学会给予、学会等待、学会分享、学会选择、学会激励、学会合作、学会"it"、学会创新,这只有这样,才能与新课程同行,才能让新课程标准下数学教学过程更加流畅。
有关高中数学研讨会心得体会及收获十
摘要:课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。
关键词:知识,技能,方法
近年来,数学复习资料名目繁多,许多教师过于依赖各类资料,在复习中忽视了书本中的基础知识。这中做法实际上相当于在复习中失去了基石,现谈谈本人的一些看法。
课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好”三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中,我们必须重视课本,夯实基础,以课本为主,重新全面地梳理知识,方法,注重知识结构的重组与概括,揭示其内在联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识,方法,而应自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,注意通用通法,淡化特殊技巧。
近年来高考数学试题的新颖性,灵活性越来越强,不少学生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而忽视了基础知识、基本技能、基本方法的复习。其实近几年的高考命题已经明确告诉我们:基础知识、基本技能、基本方法始终是高考数学考查的重点。选择题、填空题以及解答题中的基本常规题已达到整份试卷的80%左右,对基础知识的要求也更高、更严了。如果我们在复习中过于粗疏,或在学习中对基础知识不求甚解,都会导致在考试中判断错误。其实定理、公式推证的过程就蕴涵着重要的解题方法和规律,如果没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理,只会事倍功半。
数学复习任务重,时间紧,但决不能因此而脱离教材。相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、每一节的知识在整体中的地位、作用。
近年来的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为高考题;有的是将教材中的题目略加修改、变形后作为高考题;还有的是将教材中的题目合理拼凑、组合作为高考题。因此,一定要高度重视教材,针对教材所要求的内容和方法,把主要的精力放在教材的落实上,切忌刻意追求偏题、怪题和技巧过强的难题。
学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容。高中数学中的基础知识、基本技能主要包括②,基本的数学概念、数学结论的本质,概念、结论等产生的背景、应用,以及其中所蕴涵的数学思想和方法,和它们在后续学习中的作用。同时,还包括数学发现和创造的一些基本过程。
高中数学考试的内容选取,要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆、模仿以及复杂技巧。尤其要把握如下几个要点:
1、关于学生对数学概念、定理、法则的真正理解。尤其是,对数学的理解,至少包括能否独立举出一定数量的用于说明问题的正例和反例。
2、关于不同知识之间的联系和知识结构体系。即高中数学考试应关注学生能否建立不同知识之间的联系,把握数学知识的结构、体系。
3、对数学基本技能的考试,应关注学生能否在理解方法的基础上,针对问题特点进行合理选择,进而熟练运用。同时,注意数学语言具有精确、简约、形式化等特点,适当检测学生能否恰当地运用数学语言及自然语言进行表达与交流。
在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:
1、函数思想。中学数学,特别是中学代数,可谓是以函数为中心(纲)。集合的学习,求函数的定义域和值域打下了基础;映射的引入,使函数的核心----对应法则更显现其本质;单调性、奇偶性、周期性的研究,是对映射更深入更细致的刻画;函数与反函数的研究,辨证全面地看待事物之间的制约关系。数列可以看成是特殊的函数。解方程f(x)=0,就是求函数y=f(x)的零点;解不等式f(x)0或f(x)0,就是求函数y=f(x)取正值、负值的区间;函数极限的研究,导数、微分、积分的研究,也完全是以函数为对象,为中心的。一句话,抓住了函数,就牵起中学代数的“牛鼻子”。
2、数形结合思想。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与树轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
数形结合的重点是“以形助数”。运用数形结合思想,不仅易直观发现解题途径,而且能避免复杂的计算与推理。大大简化了解题过程。这在解选择题、填空题中更显其优势,要注意培养这种思想意识,要争取做到“胸中有图,见数想图”,以开拓自己的思维视野。
3、分类讨论思想。所谓分类讨论,就是当问题所给的对象不能统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的答案。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
分类方法:明确讨论对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合得出结论。
4、转化思想。将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化的思想的实质是揭示联系,实现转化。
熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。
教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说:
1、夯实基础、加强概念教学:历年高考都有40%左右分值比重的试题综合性较弱、难度较低、贴近教材,解答过程较为直观且命题方式相对稳定,用以考查学生基础知识的掌握情况。有40%左右分值比重的试题综合性较强,命题较为灵活,难度相对较高,用以考查学生的基本能力。知识是基础,能力的提高和知识的丰富是相互伴随的过程,要意识到基础知识的重要性,常规教学中一味求难求变的作法是不可取的,抓住基础知识是全面提高教学质量和高考成绩的关键。数学科学建立在一系列概念的基础之上,数学教学由概念开始,概念教学是基础的基础。数学具有高度抽象的特点,概念的形成是教学工作的难点。知识的发生发现过程是概念的形成过程,挖掘并精化知识的发生发现过程,直观展现知识的发生背景和前人的思维过程,是概念教学的关键。数学学习要理解诸多的概念及概念间的关系,概念教学贯穿于数学教学工作的始终。探讨概念间的关系,展示概念间的联系,把诸多概念有机地串接起来,有利于加深学生对概念的理解,有利于“辩证、普遍联系”的认识观念的形成,有利于探寻、解决问题能力的提高和数学思想方法的形成。
2、强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念的理解和掌握,对一些核心概念要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
3、重视基本技能的训练。熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。
随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化。一些新的知识就需要添加进来,原有的一些基础知识也要用新的理念来组织教学。因此,教师要用新的观点审视基础知识和基本技能,并帮助学生理解和掌握数学基本知识、基本技能和基本思想。对一些核心概念和基本思想(如函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等)要在整个高中数学的教学中螺旋上升,让学生多次接触,不断加深认识和理解。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质,注重体现基本概念的来龙去脉。在新课程中,数学技能的内涵也在发生变化,在教学中要重视运算、作图、推理、数据处理、科学计算器和计算机的使用等基本技能训练,但应注意避免过于繁杂和技巧性过强的训练。
有关高中数学研讨会心得体会及收获十一
在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识内容选择相关题目,往往每节课都涉及好几种题型。
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原来45分钟的内容在35分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;
三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。可能的话,教学可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位臵关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位臵关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很
久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方